
Why outlets have weak references

Introduction

This is a series of diagrams that visually explain why, when we create properties for outlets in our
storyboard views, we give them weak references. The diagrams also show why it's handy to
create outlet properties.

Why outlets have weak references Page 1



A very simple view/controller hierarchy

This diagram shows the hierarchical relationships of a very simple view controller and its views.
(View controllers are green, views are orange, arrays are yellow, windows are black.)

The window that holds the app has a rootViewController property, which must be filled by an
instance derived from UIViewController. The rootViewController has a view property, which must
be filled by an instance derived from UIView. The view has a subviews property, which is an array
that can be populated by more UIView-derived instances. (These include UILabel, UIButton, etc.)

Everything inside the white dotted line would be created through the storyboard.

Why outlets have weak references Page 2



The very simple hierarchy with some specifics added in

The boxes in white here show an example of what might actually go here. The rootViewController
for the sample is an instance of a UIViewController subclass, called (very imaginatively)
MyViewController. Within the storyboard, the base view (just a plain old UIView object) has two
interface elements, a label and a text field.

Why outlets have weak references Page 3



The very simple hierarchy as it appears in the storyboard

I created a Single View project, named the root view controller MyViewController, and in the
storyboard dragged out a label and a text field. This creates the structure shown in the diagram
above.

In terms of memory retention, here's what this all means: The window has a strong pointer to the
rootViewController (MyViewController), which has a strong pointer to its view (as defined in the
storyboard). The view has strong references to each of its subviews. Strong references are used
when one object "owns" another object. Ownership follows the hierarchy down from the top.

Why outlets have weak references Page 4



The problem of access...

So, now that we've created this hierarchy, there should be a way for the view controller
(MyViewController) to talk to the subviews (the label and the textfield). They're in the hierarchy, so
there is a way -- it's just messy. Something like what's shown here.

Trying it out...

This bit of code is just fraught with dangers -- if the first view in the subviews array isn't a label, or
the second view isn't a textfield, there's a big fat crash in your future. But assuming the hierarchy
is exactly as specified, it will work. So it is possible to work through the hierarchy.

Why outlets have weak references Page 5



Using tags for access

A more efficient approach would be to tag each subview that we'll need to access later -- like
tagging an animal in the wild. This can be done through the storyboard, by using the View section
of the Attributes Inspector. In this screenshot, I've selected the label and given it a tag of 1 (tags
must be integers, anything unique and above 0 should work).

Trying it out...

Assuming I gave the textfield a tag of 2, here's how I might access the two subviews in my code.

Why outlets have weak references Page 6



What we're trying to do...

Here's the diagram again, showing what we're trying to do, which is get easy access to those two
subviews, which could be buried way down in the view hierarchy. Ownership has already been
determined by the main hierarchy (black arrows). We just want access (blue arrows).

Why outlets have weak references Page 7



Using properties for quick access

The best way to access those subviews is to create a reference to them in the view controller
using properties. But remember -- these properties are just handy-dandy references to something
that already exists further down in the hierarchy. They don't imply any kind of ownership (we
already have that), so they shouldn't be strong references.

Why outlets have weak references Page 8



Properties in code

Here are the property declarations, showing that they are weak references.

Connect the properties to the storyboard using IBOutlet

The previous code sample is correct and complete. In the sample above, I've added the keyboard
IBOutlet, which doesn't add anything to its meaning -- but it does tell Xcode that I will want to hook
these properties to objects in the storyboard.

Why outlets have weak references Page 9



An Xcode view of IBOutlet in action

Once I've added IBOutlet (IB stands for Interface Builder, which is the part of Xcode that creates
storyboards), Xcode displays the little circle in the gutter. This is for linking things to the
storyboard.

IBOutlet properties successfully wired up

Once I've wired the outlets to the storyboard, the circles are filled in.

Why outlets have weak references Page 10


	Introduction
	A very simple view/controller hierarchy
	The very simple hierarchy with some specifics added in
	The very simple hierarchy as it appears in the storyboard
	The problem of access...
	Trying it out...
	Using tags for access
	Trying it out...
	What we're trying to do...
	Using properties for quick access
	Properties in code
	Connect the properties to the storyboard using IBOutlet
	An Xcode view of IBOutlet in action
	IBOutlet properties successfully wired up

